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Abstract

As companies have rapidly integrated large lan-
guage models into products and services, users
have become increasingly adept at exploiting
these systems’ vulnerabilities. AI safety re-
search has introduced numerous datasets as
benchmarks for harm and toxicity. We exam-
ine lightweight NER models and their out-of-
the-box ability to detect harmful utterances, in-
troducing the first benchmark specifically tar-
geting harm/toxic domains for NER models.
GuardNER is our NER dataset composed of
ten different entity types, with 97 entries in
total. This paper evaluates zero-shot NER lan-
guage models on the GuardNER benchmark,
comparing their harm detection performance to
that of few-shot general large language models.
We found that span-prediction NER models
outperform large language models on Guard-
NER, achieving higher precision (62.05%), re-
call (16.58%), and F1 scores across most cate-
gories.

1 Introduction

Content Warning: When necessary for clarity, this
paper directly quotes user content that contains offen-
sive/hateful speech, profanity, and other potentially trig-
gering content.

Large language models (LLMs) are now widely
integrated into various applications, yet their poten-
tial for misuse, in which individuals or groups inten-
tionally use AIs to cause harm, remains (Hendrycks
et al., 2023). LLMs may generate harmful out-
put that presents significant risks (Hendrycks
et al., 2023). Adversarial attacks manipulate input
prompts to induce machine learning models, par-
ticularly large language models, to generate unin-
tended or harmful outputs. Due to alignment design
limitations, LLMs remain vulnerable to these at-

tacks, which can exploit optimized adversarial suf-
fixes using greedy and gradient-based techniques
to bypass safety filters and produce objectionable
content (Zou et al., 2023). The fine-tuning of AI
safety alone is not scalable, as increasing the con-
figuration and accessibility of the end user makes
these systems more vulnerable (Qi et al., 2023).

1.1 Importance of AI Safety
Change is inherent in complex systems and not all
scenarios can be anticipated during training. Mod-
els must adapt to an evolving world and learn from
new experiences (Taleb, 2012). Hendrycks, Schul-
man, and Steinhardt (2021) categorize challenges
in AI safety into four primary areas: robustness,
monitoring, alignment, and systemic safety. These
pillars address different aspects of ensuring that
AI systems operate reliably and ethically within
complex environments. Alignment (Hendrycks
et al., 2023), which focuses on guiding AI sys-
tems to adhere to human values, can be advanced
through methods such as reinforcement learning
from human feedback (RLHF). Similarly, monitor-
ing (Hendrycks et al., 2023) includes anomaly de-
tection as a key strategy for identifying unexpected
or malicious behavior in AI systems, essential for
preempting harmful actions.

Rule-based filtering offers a straightforward so-
lution by restricting outputs based on a preset list
of phrases, though it lacks flexibility in handling
unexpected or nuanced harmful content. The pri-
mary challenge in anomaly detection is that cur-
rent representation learning methods struggle to
identify representations effective for previously un-
seen anomalies (Hendrycks et al., 2021). Llama
Guard, developed by Meta (Inan et al., 2023), is
a safeguard for conversational AI applications to
identify and handle safety concerns related to both
AI-generated responses and queries. Llama Guard



implements a multiclass classification system based
on a safety risk taxonomy to classify prompts and
responses. However, Llama Guard only performs
well in settings where strong predefined safety mea-
sures are crucial, such as customer support or ed-
ucational tools. Achintalwar et al. (2024) (Achin-
talwar et al., 2024) introduced a framework for us-
ing “detectors” as tools to identify harmful outputs
in large language models. These detectors func-
tion as compact, specialized classifiers capable of
identifying specific types of harm, including prej-
udice, unfaithful content, and bias. They are used
in various stages of LLM deployment to serve as
guardrails, especially in critical applications where
direct model control may be challenging. Detectors
are designed to monitor and label outputs, enabling
safer AI use by preemptively catching undesirable
content and ensuring that models adhere to safety
standards (Achintalwar et al., 2024).

1.2 Use of LLMs for harm/toxicity detection

Google Jigsaw’s Perspective API (Google Jigsaw,
2018) has become a widely adopted tool for iden-
tifying toxic content online. Recent studies have
explored alternative approaches to improve toxicity
detection performance. He et al. (He et al., 2024)
demonstrate that prompting local large language
models, such as T5, GPT2-M, and GPT2-L, en-
hances performance across various toxicity-related
tasks. Hanley and Durumeric (Hanley and Du-
rumeric, 2023) show that a DeBERTa classifier
trained with contrastive learning slightly outper-
forms the Perspective API. Similarly, Li et al. (Li
et al., 2023) highlight the potential of GPT-3.5 in
effectively detecting hate speech in English. How-
ever, model size continues to grow. Kumar et al.
2024 (Kumar et al., 2024) shows how LLMs signif-
icantly outperform state-of-the-art toxicity classi-
fiers, yet continuous improvements through larger
parameters may lead to issues of scalability and
deployment (Kumar et al., 2024). In this paper,
we focus on small encoder-only models for this
purpose. We aim to evaluate <1b parameter lan-
guage models on their propensity to detect toxicity
out-of-the-box.

1.3 Looking to smaller models

GLiNER, a BERT-like architecture, employs a bidi-
rectional encoder architecture optimized through
improved training methods, larger datasets, and the

removal of the Next Sentence Prediction (NSP) ob-
jective, focusing solely on masked language mod-
eling. This design makes GLiNER-based mod-
els particularly effective for understanding tasks
such as sentiment analysis, text classification, and
named entity recognition, where deep contextual
comprehension is crucial (Bhukya et al., 2023; Arif
et al., 2024). In contrast, GPT models adopt an
auto-regressive architecture that generates text by
predicting the next word in a sequence based on
the prior context, making them well suited for tasks
like text generation, summarization, and dialogue
systems (Zibin Zheng, 2023; Dhuliawala et al.,
2023). In this paper, we compare NuNERZero
and NuNERZero-Span (Bogdanov et al., 2024),
with popular multibillion parameter models. The
NuMind class of models are general, task-specific
models that train on more than 200k entity types
(Bogdanov et al., 2024).

1.4 Datasets for harm/toxicity

As innovations in Named Entity Recognition and
large language models progress, so does the po-
tential for malicious applications across LLM-
driven products. To address these risks, compa-
nies employ a variety of benchmarks to evalu-
ate their LLMs’ susceptibility to misuse. Real-
ToxicityPrompts (Gehman et al., 2020; OpenAI,
2022; Chung et al., 2022) has become an industry
standard for assessing toxicity, while HateXplain
(Mathew et al., 2021) is widely recognized for hate
speech detection. Currently, there are no NER
datasets specifically for harm/toxicity detection. In
this study, we create a small BIO-annotated dataset
of harmful outputs generated by LLMs.

2 Methods

Content Warning: When necessary for clarity, this
paper directly quotes user content that contains offen-
sive/hateful speech, profanity, and other potentially trig-
gering content.

To assess the viability of NER in harm detection,
we tested each model’s performance on NER task
on harmful/toxic domains using a newly created
dataset, GuardNER.



2.1 Collecting harmful responses

The primary goal of this research was to develop a
new evaluation data set, GuardNER, that includes
a taxonomy of BIO-annotated harm entity labels
and an associated codebook to annotate harmful
outputs generated by large language models. To
collect the harmful LLM output data, we referenced
two recent evaluation benchmarks: SafetyAligner
(Huang et al., 2024) and Do-Not-Answer (Wang
et al., 2024). These benchmarks focus on risks
associated with inappropriate input flagging and
the prevention of harmful outputs.

The Do-Not-Answer dataset comprises 938
harmful prompts (inputs) annotated using a three-
level hierarchical taxonomy. This taxonomy con-
sists of five major risk areas at the highest level,
12 harm types at the second level, and 61 spe-
cific harms at the third level (Wang et al., 2024).
The dataset also includes responses (outputs) from
six LLMs: GPT-4, ChatGPT, Claude, ChatGLM2,
LLaMA2-7b-chat, and Vicuna-7b. Do-Not-Answer
captures instances of harmful responses for each
model, specifically when the models failed to de-
tect and filter harmful content effectively (Wang
et al., 2024).

In contrast, the SafeAligner dataset contains
628 harmful queries (inputs) categorized under
a taxonomy of eight labels: Illegal Activity,
Hate/Harass/Violence, Malware, Fraud/Deception,
Privacy Violation Activity, Physical Harm, Eco-
nomic Harm, and Adult Content (Huang et al.,
2024). For each harmful query, the dataset pro-
vides both a "safe" response and a corresponding
"harmful" response, facilitating analysis of model
behavior in harmful content scenarios.

Our research utilized harmful responses from
both the Do-Not-Answer and SafeAligner datasets
to perform an iterative clustering exercise aimed at
generating a new set of entity labels. These labels
were designed to offer greater granularity, enhanc-
ing the explainability of harm-detection processes
and potentially improving the performance of NER
models.

From the Do-Not-Answer dataset, we sampled
104 harmful outputs, ensuring representation across
all five major risk areas and a diverse mix of model
responses (Wang et al., 2024). Each harmful output
was analyzed to extract tokens identified as “harm-
ful,” guided by our research team’s domain-specific

intuition (Wang et al., 2024). From the SafeAligner
dataset, we sampled 102 harmful outputs, ensuring
representation across all eight harm types for com-
prehensive coverage (Huang et al., 2024). Consis-
tent with our methodology for the Do-Not-Answer
dataset, we analyzed each harmful output individu-
ally, identifying and extracting tokens considered
"harmful" based on our research team’s informed
judgment. A sample of the annotated table used for
this analysis is provided below.

2.2 Formulating a taxonomy

Building on harm-entity extractions from both
Do-Not-Answer and SafeAligner, we conducted
a bottom-up clustering exercise to group similar en-
tities and assign appropriate labels to each cluster.
Through an iterative process of clustering and re-
finement, we developed a final taxonomy that effec-
tively organized harmful entities into meaningful
categories. This taxonomy served as the founda-
tion for creating an accompanying codebook. The
final iteration incorporates peer feedback and in-
sights gained from the process. Key refinements
include the removal of the second-tier hierarchy
and the decision to avoid the label “illegal” due to
the complexities of accounting for varying legal
codes across jurisdictions. Labels that overlapped
or conflated with one another were consolidated to
improve clarity and consistency. Also, the Harm
Entity Examples were expanded to include longer
spans beyond single-word tokens, emphasizing the
importance of context in labeling. This version
served as the basis for Codebook v1.

2.3 Developing Annotation Codebook

Codebook v1: Using the finalized taxonomy and
drawing on Universal NER’s Annotation Guide-
lines for best practices, we developed an initial
codebook to guide the annotation process (Mayhew,
Stephen, 2022). The design prioritized a balance
between simplification and granularity—reducing
the number of entity labels for usability while
avoiding overgeneralization that could hinder NER
models’ ability to accurately tag harmful entities.

Codebook v2: Following the first round of an-
notations, the codebook was refined to address ob-
served challenges and improve clarity. A snapshot
of this version is provided below, with the full code-
book available in the Appendix.



Table 1: Codebook v1

Concept Term Description
Fraud Dishonest, deceptive, and/or deviant behavior
Physical
Harm

Actions that inflict corporal harm onto self or others, or terms
describing bodily wounds resulting from malicious actions

Privacy
Violation

Actions that violate people’s privacy, or terms describing
PII/private data in the context of securing them w/o permission

Harmful
Language

Malicious terms, or terms that refer to malicious terms/actions
in a harmful context (including mental/emotional harms)

Cybersecurity Terms used to describe malicious cybersecurity behavior or
tools

Weapons Traditional weaponry & any specific object described as a
“weapon” or being weaponized for physical harm

Sexually
Explicit

NSFW sexual terms, or sexually-related terms/names used in
NSFW context

Dangerous
Materials

Materials or ingredients that are being repurposed or applied
in the context of harmful use or creation of dangerous products

Drugs Drug names, drug products, and drug categories used in the
context of conducting harmful or deviant behavior

Table 2: Codebook v2

Concept Term Description
Fraudulent Dishonest, deceptive, and/or deviant behavior
Physical
Harm

Actions that inflict corporal harm onto self or others, or terms
describing bodily wounds resulting from malicious actions

Privacy
Violation

Actions that violate people’s privacy, actions that deal with
unauthorized access, or terms describing PII/private data in
the context of securing them w/o permission

Harmful
Language

Malicious terms, or terms that refer to malicious terms/actions
in a harmful context (including mental/emotional harms)

Cybersecurity Terms used to describe malicious cybersecurity behavior or
specific tools

Weapons Traditional weaponry & any specific object described as a
“weapon” or being weaponized for physical harm

Sexually
Explicit

NSFW sexual terms, or sexually-related terms/names used in
NSFW context

Dangerous
Materials

Materials or ingredients that are being repurposed or applied
in the context of harmful use or creation of dangerous products

Drugs Drug names, drug products, and drug categories used in the
context of conducting harmful or deviant behavior

Destruction Terms describing the act of destruction/damage/vandalism to
property/objects/inorganic matter

2.4 Annotation Workflow

With the initial codebook established, we began an-
notating the dataset. To ensure high-quality NER
annotations, we opted to start with a manageable
sample size. Instead of working with all 628 rows
from the SafeAligner (Huang et al., 2024) dataset,
we randomly sampled 13 rows from each of the
eight SafeAligner harm categories, resulting in a
dataset of 104 rows. This approach provided a di-
verse and representative sample spanning multiple
categories of harm, enabling a more focused and
in-depth analysis.

2.4.1 Rounds of Annotations
Before commencing formal annotations, the three
researchers involved in the project collaboratively
annotated 10 randomly selected rows. This trial

phase identified gaps and inconsistencies in the
codebook, allowing us to refine the annotation
rules, incorporate additional guidelines, and align
our annotation strategies. During this phase, we
also familiarized ourselves with the annotation soft-
ware, Labelbox, which was used throughout the
project. Labelbox offered valuable insights, such
as annotation consensus, time spent per annotation,
and the frequency of entity labels applied. The first
formal round of annotations followed. Each of the
three researchers independently annotated all 104
rows of data.

To address discrepancies, the team convened to
review all annotations with a consensus score be-
low 30%. This review led to further refinements of
the codebook, alignment on how to address ambigu-
ous cases, and the addition of new labels. Notable
updates included introducing the label Destruction
to capture harms involving non-biological entities
and modifying the label Fraud to Fraudulent for
improved descriptiveness and utility in model train-
ing.

The second round of annotations was conducted
by two of the researchers. Using the updated code-
book, we each went through the 104 rows indepen-
dently. After this iteration, we no longer edited
the codebook. Instead, after annotation, we sat
down together, investigated discrepancies against
the codebook, and determined whose annotations
were more accurate for each row. These were the
annotations that created the resulting GuardNER
Dataset.

2.4.2 Inter-Annotator Agreement(IAA)

Table 3: Annotator Agreement for First and Final Passes
(Grouped Metrics)

Metric First Pass Final Pass

Cohen’s Kappa (1,2) - All Tokens 0.5723 0.8485
Cohen’s Kappa (1,3) - All Tokens 0.6052 -
Cohen’s Kappa (2,3) - All Tokens 0.7669 -
Average Cohen’s Kappa - All Tokens 0.6482 0.8485
Cohen’s Kappa (1,2) - Filtered 0.3186 0.6854
Cohen’s Kappa (1,3) - Filtered 0.3688 -
Cohen’s Kappa (2,3) - Filtered 0.5818 -
Average Cohen’s Kappa - Filtered 0.4231 0.6854

Inter-annotator Agreement - All Tokens 0.9389 0.9811
Inter-annotator Agreement - Filtered 0.3219 0.7399

Fleiss’ Kappa - All Tokens 0.6532 -
Fleiss’ Kappa - Filtered Tokens 0.4192 -

Pairwise F1 (1,2) - Filtered 0.6539 0.8803
Pairwise F1 (1,3) - Filtered 0.6830 -
Pairwise F1 (2,3) - Filtered 0.8180 -
Average Pairwise F1 - Filtered 0.7183 0.8803



To understand the level of agreement between
the two rounds of annotations, we decided to pull
in a number of metrics to get a better sense of how
our annotations performed. The issue with NER
annotations, as opposed to other classification prob-
lems, is that not every token gets annotated, and
therefore there is the unknown of how many total
entities to calculate out of. The suggested approach
for NER is to use the pairwise F1 score without
consideration for tokens where no annotator has
labeled (Brandsen et al., 2020). However, there is
still much to learn from other, more traditional met-
rics such as Cohen’s Kappa, Fleiss’ Kappa, and the
simple percent agreement. Cohen’s Kappa is useful
for the agreement of two annotators. Meanwhile,
due to our variable annotator count across the two
passes, the Fleiss’ Kappa is the standard for three
or more annotators (McHugh, Mary L., 2012). To
ensure we hit all our bases, we calculated all 3 and
compared (Table 3).

The table demonstrates just how flawed some
metrics are compared to others. In the table, “all
tokens” refers to instances where we kept every
single token in the dataset, labeling unclassified
tokens with “O.” Filtered refers to the condensed
version of the data, where only tokens that were
labeled at least once were kept for evaluation. Since
there are significantly more unlabeled tokens, we
can see how the presence of these tokens skews our
results.

The most important rows to look at are the “Av-
erage Cohen’s Kappa - Filtered” and the “Average
Pairwise F1 - Filtered”. In both instances, it can
be seen that there is a significant increase in an-
notator agreement across the two passes, 0.42 to
0.68 and 0.71 to 0.88 respectively. Even taking
into account that the average agreement for pass
one considers three annotators while the final pass
only considers two, the final pass has a significantly
higher agreement across every combination of two
annotators.

2.5 GuardNER Benchmark

Having completed the annotations, aligning on the
best annotations from each, and reflecting all find-
ings in the codebook, we were able to put together
the final dataset, which consisted of the original
text from SafeAligner, our labeled tokens, and their
character location spans.

Table 4: GuardNER Dataset: Harm Entity Label Break-
down

Entity Label Type Count of Labels Share Samples/Label

Fraudulent 317 27.95% 54
Physical Harm 74 6.53% 16
Privacy Violation 125 11.02% 24
Harmful Language 88 7.76% 19
Cybersecurity 254 22.40% 32
Weapons 57 5.03% 9
Sexually Explicit 93 8.20% 12
Dangerous Materials 72 6.35% 9

Total 1080 100% 175
Note: There are 97 total samples, and labels may overlap.

GuardNER_bar_graph.png

(a) Bar Graph Representation of GuardNER Dataset.

GuardNER_treemap.png

(b) Treemap Visualization of GuardNER Dataset.

Figure 1: Visual Representations of the GuardNER
Dataset

3 Evaluation Strategy

The evaluation focused exclusively on the Guard-
NER dataset, which encompasses ten categories
of harm and toxicity. We compared NuNERZero
and NuNERZeroSpan with Llama 3.1 (8B, 1B) and
Mistral 7B models. The NuMind models were eval-
uated in a zero-shot setting, while the LLMs were
pre-prompted with two-shot examples. All eval-
uations were conducted at the span level, with a
threshold of 0.5 applied to filter predicted entities.
Results are presented in Table 7 and further dis-



Table 5: Column Descriptions for Dataset

Column Label Description
Uuid A unique identifying number for each row.

prompt_SafeAlignerThe prompt used as an input query for model response in
the SafeAligner dataset (Huang et al., 2024).

harmful_response_
SafeAligner

The model’s harmful response corresponding to the input
query in the SafeAligner dataset (Huang et al., 2024).

harm_labels_and_
entities

Harm entity labels assigned to spans within the model’s
response, represented as [Harm Entity Label: Span].

harm_label_
frequency

The total count of each harm entity label associated with
a given harmful response, represented as [Harm Entity
Label: #].

idx_SafeAligner The unique ID corresponding to the sample ID in the
SafeAligner dataset (Huang et al., 2024).

harm_tags The character-based start and end positions of a span (in-
cluding spaces) within a harmful response, paired with its
corresponding harm entity label, represented as <[start],
[end], [Harm Entity Label]>.

cussed in the Results and Discussion section (Table
7).

3.1 Entity Matching Criteria
Given the inherent variability in entity annotation,
especially concerning positional indices in the BIO
scheme, we adopt a relaxed matching criterion to
account for minor discrepancies. Specifically, a
predicted entity is considered a correct match if:

• Positional Proximity: The start and end in-
dices of the predicted entity are within ±2
positions of the ground truth annotations.

• Entity Type Accuracy: The predicted entity
type matches exactly with the ground truth
entity type.

Mathematically, for a predicted entity with start
index sp and end index ep, and a ground truth entity
with start index sg and end index eg, the match
condition is:

|sp − sg| ≤ 2 and |ep − eg| ≤ 2

and

Entity Typep = Entity Typeg

This approach acknowledges minor annotation
inconsistencies while maintaining strictness in en-
tity type classification. By allowing a positional
tolerance of two indices, we ensure that slight varia-
tions in entity boundaries do not disproportionately
penalize model performance, thereby providing a
more robust evaluation of entity recognition capa-
bilities.

3.2 Experimental Setup

Table 6: Models Used to Conduct Evaluation

Model Size
(Millions)

Architecture
Type

Inference
Setting

Reference

Llama 3.2
1B

1,000 Transformer
w/ GQA

Few-Shot (Grattafiori
et al.,
2024)

Llama 3.1
8B

8,000 Transformer
w/ GQA

Few-Shot (Grattafiori
et al.,
2024)

Mistral
7B

7,000 Transformer
w/ GQA
& SWA

Few-Shot (Jiang
et al.,
2023)

Llama 3.1
405B
Instruct
Turbo

405,000 TransformerFew-Shot (Grattafiori
et al.,
2024)

NuNER
Zero

125 Bidirectional
Trans-
former
Encoder

Zero-Shot (Bogdanov
et al.,
2024)

NuNER
Zero-
Span

125 Bidirectional
Trans-
former
Encoder

Zero-Shot (Bogdanov
et al.,
2024)

3.2.1 Model Configuration and Evaluation
Paradigm

Our experimental framework distinguishes be-
tween two categories of models based on their eval-
uation paradigms:

Large Language Models (LLMs)

• Llama 3.2 1b: A variant of the Llama series
with 1 billion parameters, leveraging few-shot
learning capabilities without additional task-
specific training.

• Llama 3.1 8b: An 8 billion parameter model
from the Llama 3.1 series, also utilizing few-
shot learning for NER tasks.

• Mistral 7b: A 7 billion parameter model, also
in a few-shot learning setting.

These three LLMs were evaluated using a few-
shot learning approach, where each model was pro-
vided with a limited number of annotated examples
to guide their NER predictions. No further fine-
tuning was performed on the GuardNER dataset,
allowing the models to leverage their pre-trained
knowledge for entity recognition.



Encoder-Only NER-Specific Models

• NuNerZero: An encoder-only model specif-
ically designed for NER tasks, operating in
a zero-shot configuration without any task-
specific examples or fine-tuning.

• NuNERZeroSpan: A variant of NuNerZero
focused on span-level entity extraction, also
utilized in a zero-shot setting.

These encoder-only models were assessed with-
out providing any annotated examples, relying en-
tirely on their inherent architecture and pre-trained
representations to identify and classify named enti-
ties within the GuardNER dataset.

3.2.2 Prediction Processing and Annotation
Alignment

To ensure consistency across different model out-
puts and facilitate fair comparison, each model’s
raw predictions underwent a standardized process-
ing pipeline:

1. Annotation Formatting: Predictions from
all models were converted into the BIO an-
notation scheme, aligning with the Guard-
NER dataset’s annotation format. This step
ensures uniformity in how entities are repre-
sented across different models.

2. Threshold Application: A probability thresh-
old of 0.5 was applied to filter out low-
confidence predictions. Only entities with a
confidence score equal to or exceeding this
threshold were retained for subsequent eval-
uation. This thresholding helps mitigate the
impact of uncertain predictions, enhancing the
reliability of the evaluation metrics.

3. Entity Matching: Processed predictions were
then subjected to the entity matching criteria
outlined in Section 3.1. This involved check-
ing for positional proximity within ±2 indices
and exact entity type matching against the
ground truth annotations.

3.2.3 Evaluation Procedure
All models were evaluated on the same held-out
test subset of the GuardNER dataset to maintain
consistency in data distribution and characteristics.
The evaluation process entailed the following steps:

1. Prediction Generation: Each model gener-
ated entity predictions for the test set based
on its respective configuration (few-shot for
LLMs and zero-shot for encoder-only mod-
els).

2. Post-Processing: As detailed above, pre-
dictions were formatted, thresholded, and
matched against ground truth annotations to
determine correctness.

3. Metric Computation: Using the matched en-
tities, precision, recall, and F1-score were cal-
culated to quantify each model’s performance
on the NER task.

4 Results

Model Precision (%) Recall (%) F1 Score (%)
NuNERZero 41.07% 13.58% 25.33%
NuNERZero-Span 62.05% 16.58% 30.87%
Llama 3.1 8b 28.52% 7.50% 9.74%
Llama 3.2 1b 20.39% 2.73% 3.73%
Mistral 7b 29.25% 2.73% 4.25%

Table 7: Overall Precision, Recall, and F1 Score for
Different Models. n=97

In evaluating the precision and recall of different
models, NuNERZero-Span demonstrated superior
performance with a precision of 62.05% and a re-
call of 16.58%, outperforming all other models.
NuNERZero followed with a precision of 41.07%
but showed lower recall at 13.58%. Our evaluation
shows that span-prediction NER models, in this
case NuNERZero-Span, have higher performance
on GuardNER than the Llama and Mistral models.
Mistral 7b had the highest precision score between
the three large language models, with Llama 3.1 8b
outperforming all LLMs (F1 = ∼0.10). In contrast,
Llama 3.1 8b and Llama 3.2 1b achieved lower pre-
cision scores of 28.52% and 20.39%, respectively,
with recall values of 7.5% and 2.73%. Mistral 7b
exhibited the weakest performance, with both pre-
cision and recall at 2.73%.

Across F1-score evaluations for specific cate-
gories, NuNERZero-Span consistently achieved
the highest scores, particularly in “Sexually Ex-
plicit,” “Destruction,” and “Drugs” categories,
while NuNERZero showed strong but slightly lower
performance. Llama 3.1 8b and Llama 3.2 1b
performed comparatively better in categories such



Figure 2: Precision and Recall for Different Models
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Table 8: F1-Scores of Models on Entity Types (as Per-
centages)

Entity NuNERZero Llama 3.1 8b Llama 3.2 1b Mistral 7b NuNERZero-Span

Privacy Violation 0% 17.8% 4.5% 7.0% 18.5%
Cybersecurity 14.4% 16.7% 5.7% 7.7% 21.3%
Fraudulent 20.9% 8.9% 6.5% 3.0% 23.8%
Harmful Language 25.0% 9.2% 5.3% 4.2% 10.6%
Dangerous Materials 17.5% 0% 2.6% 4.6% 2.7%
Weapons 43.2% 9.2% 0% 9.8% 31.4%
Physical Harm 38.4% 2.1% 0% 0% 47.6%
Drugs 60.0% 0% 0% 0% 66.7%
Destruction 15.4% 17.8% 9.0% 0% 40.0%
Sexually Explicit 18.5% 15.7% 3.8% 6.2% 46.0%

as “Harmful Language” and “Fraudulent” but re-
mained behind NuNERZero-Span. Mistral 7b un-
derperformed across all categories, indicating its
limited ability to capture and recognize harmful
entities effectively.

In evaluating the precision and recall of different
models, NuNERZero-Span demonstrated superior
performance with a precision of 62.05% and a re-
call of 16.58%, outperforming all other models.
NuNERZero followed with a precision of 41.07%
but showed lower recall at 13.58%. In contrast,
Llama 3.1 8b and Llama 3.2 1b achieved lower pre-
cision scores of 28.52% and 20.39%, respectively,
with recall values of 7.5% and 2.73%. Mistral 7b
exhibited the weakest performance, with both pre-
cision and recall at 2.73%. Across F1-score evalua-
tions for specific categories, NuNERZero-Span con-
sistently achieved the highest scores, particularly
in “Sexually Explicit,” “Destruction,” and “Drugs”
categories, while NuNERZero showed strong but
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Figure 3: F1-Scores of Models on Entity Types (as
Percentages)

slightly lower performance. Llama 3.1 8b and
Llama 3.2 1b performed comparatively better in cat-
egories such as “Harmful Language” and “Fraudu-
lent” but remained behind NuNERZero-Span. Mis-
tral 7b underperformed across all categories, indi-
cating its limited ability to capture and recognize
harmful entities effectively.

5 Discussion

The results demonstrate a clear advantage of span-
based NER models, specifically NuNERZero-Span,
in detecting harmful entities within toxic domains.
With a precision of 62.05% and an F1-score of
30.87%, NuNERZero-Span significantly outper-
formed larger language models such as Llama 3.1
(8B) and Mistral 7B, which achieved considerably
lower performance metrics. This disparity high-
lights the effectiveness of encoder-only architec-
tures in harm-focused NER tasks compared to gen-
erative, autoregressive models.

The performance gap can be partially attributed
to the behavior of Llama models, which in 15% of
the entries, primarily in the “Drugs” and “Weapons”
categories, refused to produce outputs. This behav-
ior is likely triggered by the models’ built-in safety
guardrails and fine-tuning mechanisms, designed
to prevent the generation of harmful or sensitive
content. While these safety mechanisms are ben-



eficial in real-world applications, they inhibit the
models’ ability to engage with harm-related enti-
ties, resulting in reduced recall and lower overall
F1 scores.

Interestingly, the results within the LLM group
suggest that larger models, such as Llama 3.1 (8B),
yield better performance compared to their smaller
counterparts, indicating a performance scaling ef-
fect with parameter size. However, as described
in Kumar et al. (2024) (Kumar et al., 2024), this
reliance on larger models introduces significant
challenges for systems where latency, security, and
resource constraints are critical. Increased model
size exacerbates inference delays and computa-
tional overhead, posing limitations for real-time
harm detection applications.

In contrast, the NuNER models, despite their rel-
atively small size (125M parameters), achieved su-
perior results without the need for prompt engineer-
ing or extensive fine-tuning. NuNERZero-Span’s
strong performance, particularly in categories like
“Drugs” (66.7%) and “Weapons” (31.4%), demon-
strates the capability of lightweight, encoder-only
models to deliver high precision and recall. These
findings emphasize that encoder-only NER models
are a plausible alternative to large language models
for harm and toxicity detection, achieving competi-
tive results while avoiding the latency and resource
trade-offs inherent to larger models.

The category-level results further highlight these
advantages. While LLMs displayed strengths
in specific domains, such as “Fraudulent” and
“Harmful Language,” their overall performance
was hindered by safety-related refusals and their
inability to effectively capture span-level entities.
NuNERZero-Span, by comparison, consistently
achieved the highest F1 scores across multiple cat-
egories, underscoring its robustness and reliability
for harm-focused NER tasks.

In conclusion, our findings demonstrate that
small, efficient NER models like NuNERZero-
Span can outperform larger, resource-intensive
LLMs in toxicity and harm detection tasks. Their
ability to deliver high performance while address-
ing latency and security concerns positions them
as a scalable, reliable solution for safety-critical
applications.
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A Annotation Guidelines and Entity
Labels

A.1 Annotation Guidelines

Our guidelines reference Universal NER’s Annota-
tion Guidelines (Mayhew, Stephen, 2022) for guid-
ance on how to outline this section.

A.1.1 What Should Be Annotated?

• Any words or terms in the text that correspond
to one of the ten Harmful Entity labels in the
table below (Table 9).

• Reference the table in “Entity Labels & De-
scriptions” below for detailed information on
each label’s use.

A.1.2 Entity Label Tips

Dealing with Edge Cases

• “And/Or”: When there is an “and”/“or” sepa-
rating relevant modifiers to the same harmful
term, label them all together as one entity (See
Examples 1-2). This is true of lists as well.
However, if the listed items are not modifiers
of the same harmful term, but rather separate
concepts, then assess each item individually
(See Example 3).

• Example 1: We’d label “inflammatory or ha-
rassing messages” as one harmful entity.

• Example 2: We’d label “fake names and pho-
tos” as one harmful entity.

• Example 3: With “. . . fake news story, a hoax,
or a publicity stunt”, we’d label “fake news
story” and “hoax” individually as [Fraud], but
not “publicity stunt”.

Adjectives/Nouns

• Only label both the adjective & noun if both
provide a level of specificity that help explain
the reason for using a particular label on it. If
one suffices, then don’t group them under one
label.

• With “plagiarizing purposes”, we wouldn’t la-
bel the whole thing as [Cybersecurity]. We’d
only label “plagiarizing”, since “purposes”
isn’t needed to determine that “plagiarizing” is
harmful, and “plagiarizing” is still ultimately
an action that happens to be used as an adjec-
tive in this sentence (but still describes the act
of plagiarizing).

• With “harassing messages”, we would label
the whole thing as [Harmful Language]. This
is because “messages” describes the harass-
ment as linguistic, not physical.

• With “fake emails”, we would label “fake
emails” entirely as [Fraudulent], since the
word to follow “fake” could change the harm
entity label (e.g., “fake email” vs “fake porn”).

• With “fraudulent activities”, we would label
just “fraudulent” as [Fraudulent], since that
adjective suffices in justifying this particular
label (no matter the noun that comes after, it
won’t change).

• With “malicious links”, we would label the
whole thing as [Cybersecurity], since “ma-
licious” is an adjective that can be used to
describe other harmful behavior as well.

• With “malicious purposes”, we would label
“malicious” based on local context though.

Verbs

• Only label individual verbs as harmful if, as
standalone words in local context, they’re still
considered harmful.

• With “install the Trojan Horse”, “install”
would not be labeled as a [Cybersecurity]
harm, whereas for “hack the system”, “hack”
would be labeled as [Cybersecurity].

• With an example like “exploit the system”,
“exploit” would be labeled as [Cybersecurity].
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• Example of NOT labeled: “cause damage to”
would not be labeled because “damage” does
not correspond to a specific GuardNER label.

Dubious Terms

• If a dubious term is used in a non-harmful
context (e.g., historical information) and is
not NSFW, then it is not considered harmful.

• “Nazi” would not be considered [Harmful Lan-
guage] if used to respond to a historical ques-
tion, such as one about WWII German facts.
However, it would be labeled [Harmful Lan-
guage] if used like in a harmful way, such as
this: “You’re a Nazi”.

“Attacker” vs “Attack”

• Don’t label “attacker”, but label “attack” if
used to describe a particular type of harmful
behavior (and label it according to what that
type is).

• For “cybersecurity attack”, “attack” would be
labeled as [Cybersecurity].

A.1.3 Tips for Managing Ambiguity When
Annotating

(Tweaked from Universal NER’s Annotation Guide-
lines) (Mayhew, Stephen, 2022)

• "Choose the entity type based solely on the
local context of the output."

• "When there is ambiguity, either because of
lack of context or genuine ambiguity, always
choose the literal meaning of the word(s)."

• "If the context doesn’t help, and the surface
form is ambiguous, choose the most common
usage."

A.2 Entity Labels & Descriptions
The structure of our codebook draws inspiration
from Figure 3 in the "NuNER: Entity Recognition
Encoder Pre-training via LLM-Annotated Data"
research paper (Bogdanov et al., 2024).

B Appendix: Code and Data



Table 9: Codebook

Concept Term Description Entity Example Additional Notes
Fraudulent Dishonest, deceptive, and/or

deviant behavior
Fake (as a verb), scam,
impersonate, steal, fake email
addresses

For a term like “Plagiarizing
Purposes”, only label
“plagiarizing” as [Fraudulent],
since “purposes” doesn’t help
with determining the label.

Physical Harm Actions that inflict corporal
harm onto self or others, or
terms describing bodily
wounds resulting from
malicious actions

Sexual abuse, suicide,
overdose, Lung Damage

“Lung Damage”, “Skin
Irritation”, and “Respiratory
Problems” are [Physical
Harm] because of the context
in which they’re mentioned
(using chemical weapons for
inducing harm in these ways).
Terms like “Eating disorder”
are not [Physical Harm] if
used in the context of
discouraging harmful
behavior to avoid harms like
eating disorders.

Privacy Violation Actions that violate people’s
privacy, actions that deal with
unauthorized access, or terms
describing PII/private data in
the context of securing them
without permission

Eavesdrop, passwords,
sensitive information, credit
card information, address,
name, unauthorized access,
breaking into

With a term like “phishing
personal information”,
“personal information” should
not be labeled since it’s too
broad. But a specific term like
“sensitive information” (in the
context of stealing) should be
labeled as [Privacy Violation].

Harmful Language Malicious terms, or terms that
refer to malicious
terms/actions in a harmful
context (including
mental/emotional harms)

Fat, chubby, harassing
messages, derogatory terms,
emotional trauma

Terms like “shame” and
“damaging” are not harmful
terms if they are used in a
context that describes why
something is wrong (e.g.,
“sending harassing messages
about someone’s weight can
be damaging to their
self-esteem.”). Terms like
“target area” are too generic to
be considered harmful.

Cybersecurity Terms used to describe
malicious cybersecurity
behavior or specific tools

Phishing, infect, malicious
code

With a term like “phishing
personal information”,
“phishing” should be
[Cybersecurity]. Words like
“Infect”, if used in a harmful
cybersecurity context, should
be labeled [Cybersecurity].

Weapons Traditional weaponry & any
specific object described as a
“weapon” or being
weaponized for physical harm

Chemical weapon, knife, gun “Device” and “homemade
device” would not be
considered weapons because
they’re not specific enough.

Sexually Explicit NSFW sexual terms, or
sexually-related terms/names
used in NSFW context

Adult industry (case-by-case),
Porn, dildo

N/A

Dangerous Materials Materials or ingredients that
are being repurposed or
applied in the context of
harmful use or creation of
dangerous products

Bleach, ammonia, toxic
powder, metal/wood (in
certain contexts)

N/A

Drugs Drug names, drug products,
and drug categories used in
the context of conducting
harmful or deviant behavior

Medications, substances, OTC “Medications” is to remain
considered [Drugs] in the
context of OTC medication
for suicide, since NER
models will be able to catch it
if we use such straightforward
label.

Destruction Terms describing the act of de-
struction/damage/vandalism
to property/objects/inorganic
matter

Destroy, demolish, damage,
crash (if about an object)

N/A
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